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e Yexak
Jnt1 = ,"n+’l Y.+ »— (K1+Kz) .
Yosr = (K|+3K;) @y

The Runge-Kmta-N \strom formula is wrltten as -

K = -—f(t,,. ) ‘
———-f(t+ 2yt 2 1"'-'+ix)
— 2 I\ T g et s K
n? L4\
Ky = 7 £ (2 ot Zhy+ & K.)
Ky = 2 f(l,.+ h \,.+ hy,, (Kx-‘-Kz))
Yy = y,.+hy;,+ _‘(23K|+75K2"27K3+25K4)

= 96, (231(.+125K2 81K;+125K0) - 120

where the truncation error in 1 and vuis 0 (h%). A formula based on three
function evaluations with truncanon error O(h‘) is given by

K= 21 (w4 et yn)

K=" f(r,+ byt 'hy,—x- x,)

h?

Ks 2f(t..+ <oyt Zhyt oKt ZK,)

Yap = "+,l) + (10K|+4K2+2K3)

B ¥y = hypF 1 (12K.+81<,+121<,)' (2.121)

Example 2.5 Solve the initial value problem
=0+, 30 = 1,)" 0) =0, t€[0 l]
by thc Runge-Kutta method (2.119) with h= 0 1.
For n = 0 R
t0=20,y = l,J‘o='.0' ,
K, = Lzzf(to, Yo) = ('TIE(H-O)-I = 005

; n 2 2.,.., 4
Ke==7 (!o+7h,yo+—3—hyo+3-l<.).



78 NUMERICAL SOLUTIONS

AR( 4
= 2 (14 g (1+ Fen o+ 3005))
= 0050333827

yo = yuth ik 5 (Kt KD

= 140+ —;—(.005+.0050333827)
= 1,0050167
»y =0+ iT—?l-)-(.OOS+.0151001481) = 0.10050074
The exact solution is éiven by
Y =emn
The computed solution is listed in Table 2.6.

TABLE 2.6 SOLUTION OF 3" = (14+1%) y, ¥ (0) = 1, " (0) = 0 BY THE
) RuUNGE-KUTTA METHOD WITH h = 0.1

3

t » Va () ¥y (ts)
0 1 0 1 0

0.1 1.0050167 . 0.10050t 1.0050123 0.100501
0.2 1.0202098 0.204038 1.0202013 : 0.204040
0.3 1.0460407. 0.313802 1.0460279 0.313808
04 1.0833046 0.433303 1.0832871 0.433315
0.5 1.1331710 0.566554 4 1.1331485 0.566574
0.6 1.1972453 0.718298 1.1972174 0.718330
0.7 1.2776552 0.894286 1.2776213 0.894333
0.8 13771681 1.101629 1.3771278 1.101702
0.9 1.4993498 1.349266 1.4993030 1.349372

1.0 1.6487762 1.648568 - 1.6487213 , 1.648722

2.9.2 Stability analysis
We can discuss the stability and the error analysis of the Runge-Kutta
method (2.119) in a manner similar to that adopted in ‘Section 2.5.
Let us consider the differential equation :
y' =ay ‘ (2.122

" subject to the initial conditions
. y (t0) = yo, ¥' (to) = 5 t € 10, b
where a is a real number. :
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We shall discuss the three cases « = 0, — k2, k2. Using Equation (2.122)
into (2.118), we get

2 2 4 o2 3

Substituting the expressions for X; and X, into (2.119), we find

Y ay a Jn
, = , (2.123)
Vo1 as an Y

he a2 h
where ay=1+ 12 118 , Q2= lz+—1—3—
azl—ah-l-——h%t (Izz—l-*-h x (2.124)

For 2=0, we have
Ynp1=Yn4-h y;
Yo=Yy (2.125)
The solution of (2.125) can be written as
Ya=Yo
yn=Yyo+nh ¥,

4

which is an expected result.

We now consider the case a= —k2; the solutions in this case are oscillat-
ing. We, thercfore, consider the eigenvalues of the matrix in (2.123), which
are given by

1
AL ’\2=7 [a11+axn+t[(a), —ax)?+4ay; ay]'?) (2.126)

Substituting «=—k2 into (2.124) and inserting the resulting values into
(2.126), we get

474
AL A,:%[z—m k24 -”% :h[(”k ) (HkS — 36/
. 1/2
+ 432/12k2——1296)] ]
_—[2 prgrg 1KY i[( )(/:%2-4.44044737)

12
(k=2 ko) | |

where «;=15.779763 and y=6.5467418.

Computing A, and A, as functions of /12 k2, we find that the roots have unit
modulus for 0 << 4?2 k2 < 4.44. Thus the stability interval of the Runge-
Kutta method (2.119) is 0 < h%2? < 4.44.
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where g(t, y)=py-+f(t, y) and p > 0is a parameter to be chosen suiiably. To
solve the differential equation (2.127), we can approximate g{:, 3) by a
~ polynomial of an appropriate degree. Here, we wiil take a quadratic polyno-
mial for g(#, y; with undetermined coeflicients. Equation (2.127) may be
written as '

%Zf(” Y==p(y=y)+A+Biu—1,)

+_2C'(t'—tu)2 (2.128)

where (1,, 3'») is contained in. the region of interest. The four constants A,
B, C and p can be obtained by determining the value of (7, y) at four points ;
in the interval [t,, t.+h] and solve the resulting equations, We choose the

. l /
classical Runge-Kutta nodes ta. t,-- ”7:‘, fn"!"";‘ and t,+/ and put

Kl =hf(tm )'n)

h - 1
K2=‘hf (’u'}‘ —i’-’ J'n+|/2) s }';,+1/3=,1',1+~2—-K,

I E ] =
K3=Ilf(tn+ "21-, _}’114-]}2) . '}'n+l12=,1'n+";“‘K2

Ka=h f(fn‘{'h, T"-H)’ TH+I =}'n+ Ki (2.'29)
The four equations are
Ki=h A »
Ka+ph Ynyia=ph y,.-i—Ah—[——;—lsz-}--lTh’C

Ks+ph Sassz=ph yut Ah+ -;—I1ZB+—;—I:3C

Ky-+ph Fnsy =ph y,,+‘Ah+1123+%h=c (2.130)

Solving the equations (2.130), we get
h A=K,
2B=[—3(Ky+ph ya)+ 2K+ ph Fny112)
+2(K3+Ph ;M-HIZ)"(KF"P]I ?MH)]
WC=4l(Ki+ph ya) = (Ka+ph Fusu)
= (Ks+ph Furai2)+(Ka+ph Fas))]
_ Ky—K,
ph=— m] (2.131)
On integrating (2.128) between the limits ¢, to fa4+4, We obtain
Yus1=Ya+h AF,-+12 BF,+h? CF; (2.132)
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where

F _eP—1 =e“’" +-ph—1
Upn TR (ph)?

e Ph— —12—( ph)*+-ph—1
(=ph)?

F;-'—-"

R ’
Fi= g+ J=3 4 (2.133)

Equation (2.132) becomes _
Yur1=yn+ K Fi+1=3(K\+ph yn)+2(Ka+ph Vns112)
+2(K3+ph yur12)—(Ket+ph yn+|)]Ez+4l(K 1-+phya)
—(Ks+ph Fusir)— (Ks+ph ;~+1Iz)+(K4+Pfl ?n;n)]Fs (2.134)

which is the required Runge-Kutta-Treanor method. Substituting the values
f Fusyrz. Fnessz and Fnyq from (2.130), the equation (2.134) can be written as

Yur1=Ynt "16—(K1+2K2+2K3+K4)

—(ph)? (K2~ K3)F3-+(K, —4K2+-2K;
+K)Fi—4(K,— K~ K3+ Ko Fs))- (2.135)
The value of p is given by

L ST _’&:_K_z)
5 Ph= (K,—K.

The first part in (2.135) is due to the fourth order Runge-Kutta method and
the additional term is fifth order and higher in /. It is seen that when the
equation (2.134) or (2.135) is used to integrate over the interval where ph is
small, the result will be identical with the Runge-Kutta method. If ph is
large, a condition where the Runge-Kutta method is known to be unstable
then the equation (2.134) gives a far superior solution.

(2.136)

DEFINITION 2.7 An adaptive numerical method is said to be 4-stable in
the sense of Dahlquist if when the method is.applied to the equation y'=Ay,
y(to)=1o, A < 0 with exact initial condition, it gives the true solution which
is identical to that of the differential equation for arbitrary / and p=A,
Here, f(1, ¥)=>Ay, then p=—A and the equation (2.134) gives

yu+1=eu'yn (2-‘37)
Since A < 0 and therefore ya—>0 when n—>oo and for any fixed A
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Substituting the above values in (2.144) and using (2.145)>to simplify, we
have

. 1 2 - .
Yusr=Yn+hy,+ 2‘-§(141<.+251<2+91<3)_%[(_‘15K,+25K2
—9K3)Fs+ (30K, — 75K+ 45K;)F)
hy,=h y;‘+%(1<.+31<,)ﬂ—%2[(— 16K+ 15K,

—9K3)Fy+(30K,— 75K2+45K3)F) (2.148)

The term in w? in (2;148) is the modification to the Runge-Kutta-Nystrom
method.

DEFINITION 2.9 An adaptive numerical method is said to be P-stable if,
when the method is applied to the equation y”'=—2Ay, A > 0, y(t)=yy,
V'(to)=y, with exact initial conditions it gives rise to the solution which is
identical to that of the differential equation for an arbitrary & and the free
parameter is chosen as the square of the frequency.

Here, p=A2 and the equations (2.144) become

, sinw
Ya+1=)n cos w+hy,———

hy;.+| = —yppwsin wt+h y:. cOoS n _ (2.149)
which may be written in the matrix form as

Ynit Yn
[ . ]=E(W)[ , ] (2.150)
hyn i1 hyn

sinw
cos w —_—

E(w)= w
—wsinw CcOoS W

is a 2 2 matrix. The eigenvalues of the matrix E(w) are complex and of unit
modulii.

where

Bibliographical Note

There are many text books which deal with the singlestep methods for
solving initial value problems of ordinary differential equations. Particularly
~useful are 33, 46, 93, 113, 161 and 163. '

An automatic integration programme based on the Taylor series method
for solving initial valuc problems is given in 94. The Runge-Kutta methods
of various order are studied in 23, 25, 174, 175, 209 and 222. The stability
of the Runge-Kutta formulas is given in 68. We find the methods with
minimum truncation error in 118, 156 and 199,-ihe methods with extended
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region of stability in 165 and 166, and the error bounds of the méthods in
34, 137 and 220.

By an m-fold predifferentiation of the differential equations and asimple
transformation of the variables, the Runge-Kutta formulas of high accuracy
have been discussed in 82, 83, 145 and 146. The extrapolation algorithms
for the initial value problems are established in 21 and 100. The implicit
Runge-Kutta methods are given in 22, 24, 28, 208 and 252. The two point
Runge-Kutta formulas ars found in 27. Using higher order derivatives, the
obrechkoff methods are obtained in 177 and 188,

The singlestep methods based upon quadratures and interpolations have
been studied in 51, 63, 64, 65, 66, 140 and 223. The Runge-Kutta methods
for the system and the higher order initial value problems are discussed in
5,42, 109, 111, 148, 213, 219 and 260. The adaptive numerical methods are
given in 136 and 238, -

Problems

1. Obtain the Taylor series solution of the initial value problem
y, = 1—2!}': y(O) =
and determine:
(i) ¢+ when the error in Y{1) obtained from four terms only is to be

less than 1076 after rounding.
(ii) The number of terms in the series to find results correct to 10710

for0 1 1, , '
2. For the solution of the initial value problem

Y'=pi() y+4,(t), y(te)=y,
by Taylor’s series method, show that

y+m)=(1-+hpyt L Bprtee )0+ (hgot L art...)

where Pri1=p,+p, p:
qr+1=9;+41 pr
3. Apply Taylor’s series method of order p to the problem
Y=y, {0)=1
to show that :

h? ,,‘
| ye=y(t2) | € EDT t, et

4. The function y(t) is the solution of the initial value problem
YO=ft,y), 1€ 1, b]
Witg)=yo .



14,

15.

16.

17.

18.

19.

NUMERICAL SOLUTIONS

Solve the differential equation

dv __t -

by the Euler method with h=0.1 to get 1(0.2). Then repeat with
©h=0.2 to get another estimate of y(0.2). Extrapolate these results
assuming that errors are proportional to step-size, and compare the
derived result to the analytical resuit.

In a computation with Eulet’s method, the following results are obtain-
ed with various step sizes:

h=2"2  p=2-3 h=2"4
2.44141 2.56578 2.63793

Compute a better value by extrapolation.
Obtain the Runge-Kutta method of the form

Ki=h{1—h af, (yn]~ f(m)
Yne1=)at WK,

for the differential equation y'=f(y), and determine thc interval of
absolute stability for the equation

Y=l <0
Find the Ryngg;Kptta method of the form
i)  Ke=Wutan k)
Yney=ya+ WK,
(ii) Ki=hf(ys)

Ky=hf(ya+a(K,+K>))

Ynt1=Yn+ W K|+ WK,

for the initial value problem
Y=/

W(to)=yo

and obtain the interval of absolute stability for
V=A< 0

Find the order of the implicit Runge-Kutta method

y_.;+‘| =yn;+ % h[“f(’n, yn)+ zf(tiﬂ-h Vn+ 1)+hf' (.tn, yn)]

and determine its interval of absolute stability. _

The use of the fourth order implicit Runge-Kutta method (2.66) requires
the solution of the nonlinear equations at each step. They can be solv-
ed by an iteration method. Find the condition for the convergence of
the iteration method. ‘



